About

《你是我的梦想》

丁雪峰目前是普林斯顿大学的一名博士后,研究方向为太阳中微子。太阳中微子产生于太阳内氢聚变成氦的过程中,可以被用来研究太阳和中微子本身。

如果你有好的点子、希望和我合作研究一些课题,欢迎和我联系

教育经历

  • 2015.11 — 2019.05 理学博士,粒子天体物理,Cum Laude, International School for Advanced Studies (SISSA), Trieste,导师:Nicola Rossi, Gioacchino Ranucci, Matteo Agostini.
  • 2012.09 — 2015.06 理学硕士,理论物理,武汉大学,武汉,导师: 蔡浩,周详。
  • 2013.02 — 2015.06 联合培养,中国科学院高能物理研究所,北京,联合指导老师:曹俊。
  • 2008.09 — 2012.06 理学学士,物理学基地班,武汉大学,武汉,导师:周详。

工作经历

  • 2019.05 — 博士后, 普林斯顿大学,普林斯顿,导师:Frank Calaprice.
  • 2016.02 — 2019.10 访问学者,Laboratori Nazionali del Gran Sasso, INFN, L’Aquila.
  • 2015.06 — 2015.10 访问学者,中国科学院高能物理研究所,北京。

荣誉奖励

  • 2018.02 国家留学基金委会,国家优秀自费留学生奖学金。

项目经历

  • 液体闪烁体探测器能量非线性研究。重大项目(11390381),参与。
  • Collaborative Research: Solar Neutrino Science with Borexino. NSF Grant (1821080), Participant.

物理背景

标准太阳模型

太阳中微子可以被用来研究太阳的核心区域、改善标准太阳模型。太阳中微子产生于氢核聚变过程。太阳内发生的氢核聚变过程可以分成两类,分别被称为pp链和CNO循环过程。本人作为主要贡献者参与了Borexino对二期数据的分析,测量了pp链太阳中微子各分支的流强,并且将7Be中微子的测量精度提高到3%。本人以主要贡献者身份参与了Borexino对CNO循环太阳中微子的测量,并且以5 σ置信度证明了CNO循环太阳中微子流强非零。在此分析中,本人开发了该分析中关键的测量210Bi本底的分析方法Blind Aligned Merged Bubble fIt (ΒΑΜΒΙ)。本人担任了Borexino对CNO中微子实验灵敏度估算分析的协调人。

中微子振荡现象

太阳中微子的振荡现象受物质效应影响。物质效应极强和极弱情形下太阳中微子的存活几率均已被测量到,而过渡区间内则尚无测量。过渡区间可以被用来检验多种新物理模型。因为JUNO结合了使用液闪和体积大的优势,JUNO有潜力直接测量过渡区间内太阳中微子的存活几率。

探测器物理与能谱拟合

使用液闪探测器测量太阳中微子流强时,信号和本底只能通过拟合的方法被区分开,因而准确掌握能谱形状、探测器响应函数和能谱成分间的相关性十分重要。本人测量了液闪的光学性质,并且研究了各光学过程对能量响应非均匀性的影响。本人改善了Borexino使用的解析的探测器响应模型,用该模型研究了探测器响应相关的系统误差,并且发现7Be中微子流强的拟合结果强烈依赖于“7Be肩”能量处的能量分辨精度,进而提出了基于蒙特卡罗的估计系统误差的方法。为了解决使用解析的探测器响应函数拟合速度过慢的问题,本人开发了利用GPU加速的多变量拟合工具GooStats。通过对能谱成分相关性的分析,本人提出了更简单的利用区间计数来证明CNO循环太阳中微子流强非零的方法。

学术服务

  • 在European Journal of Physics C、Universe、Physica Scripta等杂志参与11次审稿。
  • 2020.08 — Universe/MDPI 副编辑。
  • Borexino使用的基于GPU加速的多变量拟合工具GooStats的开发者和维护者。

科普活动

  • 中国驻意大利使团参观格兰萨索国家实验室向导,2016.05.
  • 一个博士生对科研生涯的展望,国家自费留学生奖学金颁奖典礼 2018.06.
  • 中国驻意大利使团参观格兰萨索国家实验室向导 2019.08.

教学经历

  • 2013 — 2014 助教,热力学与统计物理,武汉大学,武汉。

报告及文章列表

会议报告

  • Prospects and challenges on Discovery of CNO-cycle with Borexino. Louise Lake Winter Institute. 2020 February 9-15, Fairmont Chateau. Edmonton, Alberta, Canada. (Plenary)
  • Prospects of neutrino mass ordering and solar neutrinos with JUNO. Louise Lake Winter Institute. 2019 February 10-16, Fairmont Chateau. Edmonton, Alberta, Canada. (Plenary)
  • Latest Phase-II results and Prospects of CNO neutrino detection with Borexino. International Symposium of Neutrino Frontier. 2018 July 16-19, ICISE center, Quy Nhon, Vietnam. (Plenary)
  • Status and Physics of JUNO. The 20th International Workshop on Neutrinos from Accelerators. 2018 August 12-18, Virginia Tech. Blacksburg, VA, U.S. (Plenary)

发表文章

  • JUNO collaboration, Calibration Strategy of the JUNO experiment, J. High Energy Phys., 03, (2021), 004.
  • JUNO and Daya Bay Collaboration, Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, Nucl. Instrum. Meth. A, 988, (2021), 164823.
  • Borexino collaboration, Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun, Nature, 587, (2020), 577-582.
  • JUNO collaboration, Feasibility and physics potential of detecting 8B solar neutrinos at JUNO, Chinese Phys. C, 45, (2021), 2, 023004.
  • Borexino collaboration, Sensitivity to neutrinos from the solar CNO cycle in Borexino. Eur. Phys. J. C, 80, (2020), 11, 1091.
  • M. Bellato, et al., Embedded readout electronics R&D for the large PMTs in the JUNO experiment, Nucl. Instrum. Meth. A, 985, (2021), 164600.
  • IceCube-Gen2 and JUNO collaboration, M. G. Aartsen, et al., Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, Phys. Rev. D, 101, (2020), 3, 032006.
  • Borexino collaboration, Search for low-energy neutrinos from astrophysical sources with Borexino, Astropart. Phys., 125, (2021), 102509.
  • Borexino collaboration, Comprehensive geoneutrino analysis with Borexino, Phys. Rev. D, 101, (2020), 1, 012009.
  • Borexino collaboration, S. K. Agarwalla et al., Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II, J. High Energy Phys., 02, (2020), 038.
  • P. Lombardi, et al., Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability, Nucl. Instrum. Meth. A, 925, (2019). 6-17.
  • M. Reguzzoni, et al., GIGJ: A Crustal Gravity Model of the Guangdong Province for Predicting the Geoneutrino Signal at the JUNO Experiment, J. Geophys. Res.: Sol. Ea., 124, (2019), 4, 4231-4249.
  • X. F. Ding, GooStats: A GPU-based framework for multi-variate analysis in particle physics, J. Instrum., 13, (2018), 12, P12018.
  • Borexino collaboration, Comprehensive measurement of pp-chain solar neutrinos with Borexino, Nature, 562, (2018), 7728, 505-510.
  • Borexino collaboration, Modulations of the cosmic muon signal in ten years of Borexino data, J. Cosmol. Astropart. P., 02, (2019), 046.
  • Q. Liu, M. He, X. F. Ding, W. D. Li, H. P. Peng, A vertex reconstruction algorithm in the central detector of JUNO. J. Instrum., 13, (2018), 09, T09005.
  • M. Grassi et al. Charge reconstruction in large-area photomultipliers, J. Instrum., 13, (2018), 02, P02008.
  • D. Pedretti, et al., Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation, IEEE T. Nucl. Sci., 66, (2019), 7, 8669820.
  • Borexino collaboration, Improved measurement of 8B solar neutrinos with 1.5 kt· y of Borexino exposure, Phys. Rev. D, 101, (2020), 6, 062001.
  • Borexino collaboration, Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data. Phys. Rev. D, 96, (2017), 9, 091103.
  • Borexino collaboration, Simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexino Phase-II, Phys. Rev. D, 100, (2019), 8, 082004.
  • Borexino collaboration, A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector, Astrophys.J., 850, (2017), 1, 21.
  • Borexino collaboration, The Monte Carlo simulation of the Borexino detector, Astropart.Phys., 97, (2018), 136-159.
  • Borexino collaboration, Seasonal Modulation of the 7Be Solar Neutrino Rate in Borexino, Astropart.Phys., 92, (2017), 21-29.
  • Daya Bay collaboration, Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys.Rev. D., 95, (2017), 7, 072006.
  • Daya Bay collaboration, Study of the wave packet treatment of neutrino oscillation at Daya Bay, Eur. Phys. J. C, 77, (2017), 9, 606.
  • Daya Bay collaboration, Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Chin.Phys. C., 41, (2017), 1, 013002.
  • Daya Bay and MINOS collaboration, Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments, Phys. Rev. Lett., 117, (2016), 15, 151801, Phys. Rev. Lett., 117, (2016), 20, 209901.
  • Daya Bay collaboration, Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment, Phys. Rev. Lett., 117, (2016), 15, 151802.
  • Daya Bay collaboration, New measurement of θ13 via neutron capture on hydrogen at Daya Bay, Phys. Rev. D, 93, (2016), 7, 072011.
  • Daya Bay collaboration, Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Phys. Rev. Lett., 116, (2016), 6, 061081, Phys. Rev. Lett., 118, (2017), 9, 099902.
  • Daya Bay collaboration, The Detector System of The Daya Bay Reactor Neutrino Experiment, Nucl. Instrum. Meth. A, 811, (2016), 133-161.
  • X. C. Ye, et al., Preliminary study of light yield dependence on LAB liquid scintillator composition, Chinese Phys. C, 39, (2015), 9, 096003.
  • X. F. Ding, et al., Measurement of the fluorescence quantum yield of bis-MSB, Chinese Phys. C, 39, (2015), 12, 126001.
  • Daya Bay collaboration, New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay, Phys. Rev. Lett., 115, (2015), 11, 111802.
  • D. M. Xia, et al., Temperature dependence of the light yield of the LAB-based and mesitylene-based liquid scintillators, Chinese Phys. C, 38, (2014), 11, 116001.

更新于2021年4月8日

Dr. Xuefeng Ding is currently a postdoc researcher at Princeton University. His research interests lie in solar neutrino physics. Solar neutrinos are emitted along with the fusion process that converted hydrogen nuclei into helium nuclei, and can be used to study both the Sun and the neutrino itself.

He is open to scientific cooperation if you have intersting ideas and would like to contact him.

EDUCATION

  • 2015.11 — 2019.05 PhD in Astroparticle Physics International School for Advanced Studies (SISSA), Trieste and Gran Sasso Science Institute (GSSI), L’Aquila. Advisor: Nicola Rossi, Gioacchino Ranucci, Matteo Agostini
  • 2012.09 — 2015.06 MS in Theoretical Physics, Wuhan University, Wuhan. Advisor:Hao Cai, Xiang Zhou
  • 2013.02 — 2015.06 Joint MS program, Institute of High Energy Physics, Chinese Academy of Science, Beijing. Advisor: Jun Cao
  • 2008.09 — 2012.06 BS in Physics Base Class, Wuhan University, Wuhan. Advisor: Xiang Zhou

WORK EXPERIENCE

  • 2019.05 — Postdoc associate, Princeton University, Princeton. Advisor: Frank Calaprice
  • 2016.02 — 2019.10 Visiting Researcher, Laboratori Nazionali del Gran Sasso, INFN, L’Aquila.
  • 2015.06 — 2015.02 Visiting Researcher, Institute of High Energy Physics, Chinese Academy of Science, Beijing

Research

Standard Solar Model

Solar neutrinos can be used to study the interior region of the Sun and improve the standard solar models. Solar neutrinos are produced when hydrogen nuclei are fused to helium nuclei. There are two types of such processed activated in the Sun, the pp-chain and CNO-cycle processes. As the main contributor, I participated in the analysis of Phase-II date in Borexino and measured fluxes of all pp-chain neutrinos except hep solar neutrinos. I also participated as the main contributor in the analysis of Phase-III data in Borexino and demonstrated a 5 σ confidence level significance to CNO neutrinos. In discovering CNO neutrinos, I developed the critical method Blind Aligned Merged Bubble fIt (BAMBI) that measured the 210Bi background. I was assigned the coordinator of the analysis of evaluating the sensitivity of Borexino to CNO neutrinos.

Neutrino Oscillations

Oscillation of solar neutrinos are modified by the matter effect due to interaction between neutrinos and the matter in the Sun. Oscillations of solar neutrinos in both matter-effect-enhanced and -negligible scenarios have been observed, while not yet for the transition region. Because JUNO combines the advantage of large target mass and low detection-energy-threshold, it is found that JUNO is expected to measure the survival probability of solar neutrinos in the transition region and study new physics.

Particle detection and spectrum-fitting

Fitting is the essential instrument to study solar neutrinos, because signals and backgrounds are highly correlated. As a result, it is critical to be precise in describing the energy spectrum, the detector response, and the correlation between components. I have improved the analytical response function used by Borexino, used it in studying the detector-related systematic uncertainty, and found that the fit result of 7Be neutrino flux is strongly correlated with the parameter describing the detector energy resolution at the “7Be shoulder”. Based on that, I developed a Monte Carlo based method for evaluating systematic uncertainties. In order to overcome that challenge that the fitting time is too long using analytical detector response models, GPU-accelerated multivariate fitting tool GooStats was developed. Based on analyses of correlations between components, a counting analysis is developed in measuring CNO neutrino fluxes.

AWARDS

  • 2018.02 Chinese scholarship Council, Chinese government award for outstanding self finance students abroad

GRANTS

  • Study of non-linearity of liquid scintillator detector. National Natural Science Foundation of China (Grant No. 11390381), participant
  • Collaborative Research: Solar Neutrino Science with Borexino. NSF Grant (1821080), Participant.

SERVICE WORK

  • Reviewed papers 11 times in European Journal of Physics C, Universe, Physics Scripta etc.
  • 2020.08 — Universe/MDPI associate editor
  • Developer and maintainer of GooStats, the multivariate fitting tool of Borexino

OUTREACH

  • 2016.05 LNGS tour guide. Chinese ambassador visit to LNGS.
  • 2018.06 A PHD’s imagination towards Science and Career. Outstanding student award ceremony.
  • 2019.08 LNGS tour guide. Chinese ambassador visit to LNGS.

TEACHING EXPERIENCE


  • 2013—2014 Teaching assistance of thermal dynamics and statistical physics, Wuhan University, Wuhan

Conference talks and peer-reviewed papers


Invited plenary talks

  • Prospects and challenges on Discovery of CNO-cycle with Borexino. Louise Lake Winter Institute. 2020 February 9-15, Fairmont Chateau. Edmonton, Alberta, Canada. (Plenary)
  • Prospects of neutrino mass ordering and solar neutrinos with JUNO. Louise Lake Winter Institute. 2019 February 10-16, Fairmont Chateau. Edmonton, Alberta, Canada. (Plenary)
  • Latest Phase-II results and Prospects of CNO neutrino detection with Borexino. International Symposium of Neutrino Frontier. 2018 July 16-19, ICISE center, Quy Nhon, Vietnam. (Plenary)
  • Status and Physics of JUNO. The 20th International Workshop on Neutrinos from Accelerators. 2018 August 12-18, Virginia Tech. Blacksburg, VA, U.S. (Plenary)

Peer-reviewed papers

  • JUNO collaboration, Calibration Strategy of the JUNO experiment, J. High Energy Phys., 03, (2021), 004.
  • JUNO and Daya Bay Collaboration, Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, Nucl. Instrum. Meth. A, 988, (2021), 164823.
  • Borexino collaboration, Experimental Evidence of neutrinos produced in the CNO fusion cycle in the Sun, Nature, 587, (2020), 577-582.
  • JUNO collaboration, Feasibility and physics potential of detecting 8B solar neutrinos at JUNO, Chinese Phys. C, 45, (2021), 2, 023004.
  • Borexino collaboration, Sensitivity to neutrinos from the solar CNO cycle in Borexino. Eur. Phys. J. C, 80, (2020), 11, 1091.
  • M. Bellato, et al., Embedded readout electronics R&D for the large PMTs in the JUNO experiment, Nucl. Instrum. Meth. A, 985, (2021), 164600.
  • IceCube-Gen2 and JUNO collaboration, M. G. Aartsen, et al., Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, Phys. Rev. D, 101, (2020), 3, 032006.
  • Borexino collaboration, Search for low-energy neutrinos from astrophysical sources with Borexino, Astropart. Phys., 125, (2021), 102509.
  • Borexino collaboration, Comprehensive geoneutrino analysis with Borexino, Phys. Rev. D, 101, (2020), 1, 012009.
  • Borexino collaboration, S. K. Agarwalla et al., Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II, J. High Energy Phys., 02, (2020), 038.
  • P. Lombardi, et al., Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability, Nucl. Instrum. Meth. A, 925, (2019). 6-17.
  • M. Reguzzoni, et al., GIGJ: A Crustal Gravity Model of the Guangdong Province for Predicting the Geoneutrino Signal at the JUNO Experiment, J. Geophys. Res.: Sol. Ea., 124, (2019), 4, 4231-4249.
  • X. F. Ding, GooStats: A GPU-based framework for multi-variate analysis in particle physics, J. Instrum., 13, (2018), 12, P12018.
  • Borexino collaboration, Comprehensive measurement of pp-chain solar neutrinos with Borexino, Nature, 562, (2018), 7728, 505-510.
  • Borexino collaboration, Modulations of the cosmic muon signal in ten years of Borexino data, J. Cosmol. Astropart. P., 02, (2019), 046.
  • Q. Liu, M. He, X. F. Ding, W. D. Li, H. P. Peng, A vertex reconstruction algorithm in the central detector of JUNO. J. Instrum., 13, (2018), 09, T09005.
  • M. Grassi et al. Charge reconstruction in large-area photomultipliers, J. Instrum., 13, (2018), 02, P02008.
  • D. Pedretti, et al., Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation, IEEE T. Nucl. Sci., 66, (2019), 7, 8669820.
  • Borexino collaboration, Improved measurement of 8B solar neutrinos with 1.5 kt· y of Borexino exposure, Phys. Rev. D, 101, (2020), 6, 062001.
  • Borexino collaboration, Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data. Phys. Rev. D, 96, (2017), 9, 091103.
  • Borexino collaboration, Simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexino Phase-II, Phys. Rev. D, 100, (2019), 8, 082004.
  • Borexino collaboration, A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector, Astrophys.J., 850, (2017), 1, 21.
  • Borexino collaboration, The Monte Carlo simulation of the Borexino detector, Astropart.Phys., 97, (2018), 136-159.
  • Borexino collaboration, Seasonal Modulation of the 7Be Solar Neutrino Rate in Borexino, Astropart.Phys., 92, (2017), 21-29.
  • Daya Bay collaboration, Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys.Rev. D., 95, (2017), 7, 072006.
  • Daya Bay collaboration, Study of the wave packet treatment of neutrino oscillation at Daya Bay, Eur. Phys. J. C, 77, (2017), 9, 606.
  • Daya Bay collaboration, Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Chin.Phys. C., 41, (2017), 1, 013002.
  • Daya Bay and MINOS collaboration, Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments, Phys. Rev. Lett., 117, (2016), 15, 151801, Phys. Rev. Lett., 117, (2016), 20, 209901.
  • Daya Bay collaboration, Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment, Phys. Rev. Lett., 117, (2016), 15, 151802.
  • Daya Bay collaboration, New measurement of θ13 via neutron capture on hydrogen at Daya Bay, Phys. Rev. D, 93, (2016), 7, 072011.
  • Daya Bay collaboration, Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Phys. Rev. Lett., 116, (2016), 6, 061081, Phys. Rev. Lett., 118, (2017), 9, 099902.
  • Daya Bay collaboration, The Detector System of The Daya Bay Reactor Neutrino Experiment, Nucl. Instrum. Meth. A, 811, (2016), 133-161.
  • X. C. Ye, et al., Preliminary study of light yield dependence on LAB liquid scintillator composition, Chinese Phys. C, 39, (2015), 9, 096003.
  • X. F. Ding, et al., Measurement of the fluorescence quantum yield of bis-MSB, Chinese Phys. C, 39, (2015), 12, 126001.
  • Daya Bay collaboration, New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay, Phys. Rev. Lett., 115, (2015), 11, 111802.
  • D. M. Xia, et al., Temperature dependence of the light yield of the LAB-based and mesitylene-based liquid scintillators, Chinese Phys. C, 38, (2014), 11, 116001.

Updated on Monday, April 12, 2021